HICSS-30 Task Force on Network Storage Architecture

January 8, 1997

Storage for ASCI

Kim Minuzzo (minuzzo1@Ilnl.gov)
Dave Wiltzius (wiltzius@Ilnl.gov)
Lawrence Livermore National Lab

http://www.llnl.gov/liv_comp/siof/siof_nap.html http://www.llnl.gov/liv_comp/siof/hpss_nap_wg.html

The ASCI Program

- Accelerated Strategic Computing Initiative (ASCI)
 - » Joint effort of 3 DOE national labs: LLNL, LANL, SNL
 - » 10 year program to 2005
 - » Nuclear stockpile stewardship w/o testing:
 - 3 dimensional, high-resolution nonlinear finite-element applications
 - » Requires super high-performance computational resources
 - » Application driven

http://www.llnl.gov/asci/

The ASCI Roadmap

The key to a usable system is balanced scaling of computational resources

ASCI Blue - Pacific

- 3.2 TFLOPS/s peak (1 TFLOP/s sustained)
- 2.5 TB of memory
- > 75 TB of online disk
- 1 PB of archive (disk and tape) with 10GB/s sustained transfer rate

To achieve performance required by ASCI requires a paradigm shift in HPC storage architecture

ASCI Architecture

The Network Is the Computer!

Network storage observations

- Data throughput
 - » 30-60MB/s throughput at <u>premium</u> price:
 - Customized API (software development/investment)
 - HIPPI hardware (dropping in cost)
 - Customized IPI-3 drivers (high software costs)
 - High-end RAID system (high capital costs)
 - » SCSI RAID I/O throughput:
 - 18MB/s via raw I/O, but
 - 3MB/s with UNIX I/O
- Scalability in capacity and throughput: HSMs can do it!

Number of Clients & Disks	Aggregate Transfer Rate (MB/s)*
16	112.1
32	174.7
64	334.0
128	636.9
240	1353.3

^{*} Data transfers across IBM SP2 interconnect using TCP/IP

Network storage observations, cont.

- Data abstraction level
 - The two ends of the spectrum
 - block I/O e.g., SCSI, IPI-3
 - file I/O e.g., NFS, AFS
 - » Scalable performance implies striping
 - Data space accessible as raw device
 - Ability to separate name (metadata) and data spaces
- Security
 - » Physically separate control network (current HPSS)
 - Simple to implement
 - Cost addition to peripheral
 - Not extensible to WAN environment
 - » Encryption / key-mgmt in drive appears to be best model
- Protocols
 - » TCP/IP must be supported!
 - » Support for multiple protocols desired, e.g. SCSI, IPI-3, ATM

Summary

Competitively priced network storage strategically important to ASCI!

- network throughput bottlenecks must be alleviated
- data abstraction level need ability to separate name and data space to allow striping
- security hardware assisted authentication
- protocols incorporate adaptive protocol selection TCP/IP a must for WAN access
- HSMs can successfully utilize network attached storage